Search results for "Gauss map"

showing 4 items of 4 documents

Gauss maps on canal hypersurfaces of generic curves in R4

2021

Abstract We analyze the generic behavior of the Gauss map in a special case provided by the canal 3-manifolds of curves generically immersed in R 4 and obtain geometrical characterizations for its singularities. We also study the geometrical properties of their corresponding parabolic surfaces, considered as surfaces immersed in R 4 .

Gauss mapComputational Theory and MathematicsGaussMathematical analysisGravitational singularityMathematics::Differential GeometryGeometry and TopologySpecial caseAnalysisMathematicsDifferential Geometry and its Applications
researchProduct

Hadamard-type theorems for hypersurfaces in hyperbolic spaces

2006

Abstract We prove that a bounded, complete hypersurface in hyperbolic space with normal curvatures greater than −1 is diffeomorphic to a sphere. The completeness condition is relaxed when the normal curvatures are bounded away from −1. The diffeomorphism is constructed via the Gauss map of some parallel hypersurface. We also give bounds for the total curvature of this parallel hypersurface.

Pure mathematicsGauss mapMathematics::Dynamical SystemsMathematics::Complex VariablesHyperbolic spaceSecond fundamental formMathematical analysisCauchy–Hadamard theoremGauss–Kronecker curvatureSecond fundamental formHypersurfaceMathematics::Algebraic GeometryComputational Theory and MathematicsBounded functionHadamard theoremTotal curvatureDiffeomorphismGeometry and TopologyMathematics::Differential GeometryAnalysisConvex hypersurfaceMathematicsDifferential Geometry and its Applications
researchProduct

The horospherical Gauss-Bonnet type theorem in hyperbolic space

2006

We introduce the notion horospherical curvatures of hypersurfaces in hyperbolic space and show that totally umbilic hypersurfaces with vanishing cur- vatures are only horospheres. We also show that the Gauss-Bonnet type theorem holds for the horospherical Gauss-Kronecker curvature of a closed orientable even dimensional hypersurface in hyperbolic space. + (i1) by using the model in Minkowski space. We introduced the notion of hyperbolic Gauss indicatrices slightly modified the definition of hyperbolic Gauss maps. The notion of hyperbolic indicatrices is independent of the choice of the model of hyperbolic space. Using the hyperbolic Gauss indicatrix, we defined the principal hyperbolic curv…

Pure mathematicsMathematics::Dynamical SystemsGauss-Bonnet type theoremHyperbolic groupMathematics::Complex VariablesGeneral MathematicsHyperbolic spaceMathematical analysisHyperbolic manifoldUltraparallel theoremhorospherical geometryhyperbolic Gauss mapshypersurfacesRelatively hyperbolic groupMathematics::Geometric Topology53A3553A0558C27hyperbolic spaceHyperbolic angleMathematics::Differential GeometryMathematics::Representation TheoryHyperbolic triangleHyperbolic equilibrium pointMathematics
researchProduct

Constant angle surfaces in 4-dimensional Minkowski space

2019

Abstract We first define a complex angle between two oriented spacelike planes in 4-dimensional Minkowski space, and then study the constant angle surfaces in that space, i.e. the oriented spacelike surfaces whose tangent planes form a constant complex angle with respect to a fixed spacelike plane. This notion is the natural Lorentzian analogue of the notion of constant angle surfaces in 4-dimensional Euclidean space. We prove that these surfaces have vanishing Gauss and normal curvatures, obtain representation formulas for the constant angle surfaces with regular Gauss maps and construct constant angle surfaces using PDE’s methods. We then describe their invariants of second order and show…

Surface (mathematics)Mathematics - Differential GeometryGauss mapPlane (geometry)Euclidean space53C40 53C42 53C50010102 general mathematicsMathematical analysisGeneral Physics and AstronomyTangentSpace (mathematics)01 natural sciencesDifferential Geometry (math.DG)0103 physical sciencesMinkowski spaceFOS: Mathematics010307 mathematical physicsGeometry and Topology0101 mathematicsConstant (mathematics)Mathematical PhysicsMathematics
researchProduct